Modular Forms on Noncongruence Subgroups and Atkin-Swinnerton-Dyer Relations

نویسندگان

  • Liqun Fang
  • J. William Hoffman
  • Benjamin Linowitz
  • Andrew Rupinski
  • Helena A. Verrill
چکیده

This is a joint project with Liqun Fang Ben Linowitz Andrew Rupinski Helena Verrill We give new examples of modular forms on noncongruence subgroups whose l-adic representations are modular and whose expansion coefficients satisfy Atkin-Swinnerton-Dyer congruences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Atkin and Swinnerton-dyer Congruence Relations (3)

In the previous two papers with the same title ([LLY05] by W.C. Li, L. Long, Z. Yang and [ALL05] by A.O.L. Atkin, W.C. Li, L. Long), the authors have studied special families of cuspforms for noncongruence arithmetic subgroups. It was found that the Fourier coefficients of these modular forms at infinity satisfy three-term Atkin and Swinnerton-Dyer congruence relations which are the p-adic anal...

متن کامل

The Arithmetic Subgroups and Their Modular Forms

Arithmetic subgroups are finite index subgroups of the modular group. Classically, congruence arithmetic subgroups, which can be described by congruence relations, are playing important roles in group theory and modular forms. In reality, the majority of arithmetic subgroups are noncongruence. These groups as well as their modular forms are central players of this survey article. Differences be...

متن کامل

Finite Index Subgroups of the Modular Group and Their Modular Forms

Classically, congruence subgroups of the modular group, which can be described by congruence relations, play important roles in group theory and modular forms. In reality, the majority of finite index subgroups of the modular group are noncongruence. These groups as well as their modular forms are central players of this survey article. Differences between congruence and noncongruence subgroups...

متن کامل

Experimental finding of modular forms for noncongruence subgroups

In this paper we will use experimental and computational methods to find modular forms for non-congruence subgroups, and the modular forms for congruence subgroups that they are associated with via the Atkin–Swinnerton-Dyer correspondence. We also prove a generalization of a criterion due to Ligozat for an eta-quotient to be a modular function.

متن کامل

On Atkin and Swinnerton-dyer Congruence Relations (2)

In this paper we give an example of a noncongruence subgroup whose three-dimensional space of cusp forms of weight 3 has the following properties. For each of the four residue classes of odd primes modulo 8 there is a basis whose Fourier coefficients at infinity satisfy a three-term Atkin and Swinnerton-Dyer congruence relation, which is the p-adic analogue of the threeterm recursion satisfied ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2010